\qquad

Squares, Square Roots and Perfect Squares

Term	Definition Square The product of a number and itself (the product of 6 and 6 is 36) Ex: $6 \times 6=6^{2}=36$
Square Root	One of two EQUAL factors of a number Ex: \quadThe square root of 9 is $3(\sqrt{9}=3)$ because $3 \times 3=9$ Radical Sign Perfect Square A number whose square root is a whole number Ex: $\quad 16$ is a perfect square because $\sqrt{16}=4$ 4 is a whole number (not a decimal/fraction)!

Perfect Squares

Are the shaded portions squares? \qquad Why? \qquad
Examples of Perfect Squares:

1) 4 is a perfect square because $2 \times 2=$ \qquad
2) 9 is a perfect square because $3 \times$ \qquad = 9
3) 16 is a perfect square because \qquad \times \qquad $=16$

Using this grid, color a perfect square larger than 16.

Why is your drawing a perfect square? Why?

Perfect Squares:

$1^{2}=$
$2^{2}=$
$3^{2}=$
$4^{2}=$
$5^{2}=$
$10^{2}=$
$15^{2}=$
$20^{2}=$

Square Roots

- Square roots are the \qquad of perfect squares.
- A square root of a number is one of its two equal factors. (Remember factors??)
- $4 \cdot 4=16$, so $\mathbf{4}$ is the \qquad of 16 .

The symbol $\sqrt{ }$,called a \qquad , is used to show a number's square root.

Examples: $\quad \sqrt{ } 4=2$ because $\quad \ldots \ldots$

$$
\sqrt{ } 9=3 \text { because } \quad _\quad \times \ldots
$$

$\sqrt{16}=4$ because \qquad $\times \ldots$ \qquad
$\sqrt{25}=5$ because \qquad \times \qquad $=$ \qquad

$$
\sqrt{ } 100=10 \text { because } \quad \times \ldots
$$

Find each square root. Think...what times itself gives you 81? (? \cdot ? = 81)
$\sqrt{81}$
$\sqrt{225}$
$\sqrt{121}$
$\sqrt{16}$
$\sqrt{4}$
$\sqrt{196}$
$\sqrt{49}$
$\sqrt{36}$
$\sqrt{64}$

Math 6 Practice (6.2)
Evaluate: Find the square of each number

1) 2^{2}
2) 4^{2}
3) 2.2^{2}
4) 6^{2}
5) 8^{2}
6) 4.1^{2}
7) 10^{2}
8) 12^{2}
9) 3.5^{2}

Evaluate: Find the square root of each number
10) $\sqrt{1}=$
11) $\sqrt{9}=$
12) $\sqrt{ } 169=$
13) $\sqrt{25}=$
14) $\sqrt{64}=$
15) $\sqrt{196}=$
16) $\sqrt{81}=$
16) $\sqrt{ } 100=$
18) $\sqrt{ } 144=$

True or False

$\sqrt{36}=6$	$\sqrt{ } 100=10$	$\sqrt{25}=4$
$\sqrt{ } 121=11$	$\sqrt{ } 64=7$	$\sqrt{99}=9$
$\sqrt{25}=5$	$\sqrt{ } 16=4$	$\sqrt{10}=5$

Circle the number in each row that is NOT a perfect square:
$\begin{array}{lllll}3 & 25 & 81 & 100 & 121\end{array}$
$\begin{array}{lllll}4 & 12 & 9 & 144 & 36\end{array}$
$\begin{array}{lllll}1 & 16 & 27 & 49 & 64\end{array}$
\qquad
\qquad

11-1 Study Guide and Intervention Squares and Square Roots

The product of a number and itself is the square of the number. Numbers like 4, 25, and 2.25 are called perfect squares because they are squares of rational numbers. The factors multiplied to form perfect squares are called square roots. Both $5 \cdot 5$ and $(-5)(-5)$ equal 25 . So, 25 has two square roots, 5 and -5 . A radical sign, $\sqrt{ }$, is the symbol used to indicate the positive square root of a number. So, $\sqrt{25}=5$.

EXAMPLES

(1) Find the square of 5 .

$$
5 \cdot 5=25
$$

(3) Find $\sqrt{49}$.

$$
7 \cdot 7=49, \text { so } \sqrt{49}=7
$$

(2) Find the square of 16.

$$
16 x^{2} \stackrel{\text { 型 }}{=1} 256
$$

(4) Find $\sqrt{169}$.
2nd $\sqrt{ }$ 169 13

$$
\text { So, } \sqrt{169}=13
$$

EXAMPLE 5 A square tile has an area of 144 square inches. What are the dimensions of the tile?

2nd $\sqrt{ } 144 \stackrel{\text { ENEM }}{=} 12$ Find the square root of 144 .

So, the tile measures 12 inches by 12 inches.

EXERCISES

Find the square of each number.

1. 2
2. 9
3. 14
4. 15
5. 21
6. 45

Find each square root.
7. $\sqrt{16}$
8. $\sqrt{36}$
9. $\sqrt{256}$
10. $\sqrt{1,024}$
11. $\sqrt{361}$
12. $\sqrt{484}$
\qquad
\qquad

Practice: Skills

Squares and Square Roots

Find the square of each number.

1. 3
2. 22
3. 25
4. 24
5. 35
6. 26
7. 37
8. 50

Find each square root.
9. $\sqrt{25}$
10. $\sqrt{100}$
11. $\sqrt{441}$
12. $\sqrt{900}$
13. $\sqrt{961}$
14. $\sqrt{784}$
15. $\sqrt{3,600}$
16. $\sqrt{1,936}$
17. What is the square of -37 ?
18. Find both square roots of 4,900 .
19. Square 7.2.
20. Square 4.5.

